The Role of Ctk1 Kinase in Termination of Small Non-Coding RNAs
نویسندگان
چکیده
Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.
منابع مشابه
Long non-coding RNAs and their significance in human diseases
Protein-coding genes account for only a small fraction of the human genome and most of the genomic sequences are transcriptionally silent, but recent observations indicate significant functional elements, including non-coding protein transcripts in the human genome. Long non-coding RNAs (lncRNAs) have been defined as transcripts of >200 nucleotides without protein-coding capacity that perform t...
متن کاملEvaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells
Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...
متن کاملThe Roles of Long non-coding RNAs (lncRNA) in Prostate Cancer
Background & Objective: Prostate cancer is a compound condition in which gene expression has altered. Several surveys have revealed that genetic components have been involved in prostate cancer progression. Findings proposed that they can modify a noteworthy portion of disposing of elements, which is associated to the developing prostate cancer in protein coding sequences. The purpose of this r...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe Role of Long Non-Coding RNAs in Ovarian Cancer
Background: Ovarian cancer is the most fatal tumor of female's reproductive system, and several genetics and environmental factors are involved in its development. Various studies have already identified suitable biomarkers to facilitate the early detection, prognosis evaluation, and the assessment of treatment response. However, the aim of this review was to investigate the role of long non-co...
متن کامل